Представление информации в форме графа. Виды графов Графы могут быть следующих видов

Виды графов могут определяться общими принципами их построения (таковы, например, двудольный граф и эйлеров граф), а могут зависеть от тех или иных свойств вершин или рёбер (например, ориентированный и неориентированный граф, обыкновенный граф).

Ориентированные и неориентированные графы

звеньями (порядок двух концов ребра графа не существенен), называются неориентированными .

Графы, в которых все рёбра являются дугами (порядок двух концов ребра графа существенен), называются ориентированными графами или орграфами .

Неориентированный граф может быть представлен в виде ориентированного графа , если каждое его звено заменить на две дуги, имеющие противоположные направления.

Графы с петлями, смешанные графы, пустые графы, мультиграфы, обыкновенные графы, полные графы

Если граф содержит петли , то это обстоятельство специально оговаривают, добавляя к основной харатеристике графа слова "с петлями", например, "орграф с петлями". Если граф не содержит петель, то добавляют слова "без петель".

Смешанным называют граф, в котором имеются рёбра хотя бы двух из упомянутых трёх разновидностей (звенья, дуги, петли).

Граф, состоящий только из голых вершин , называется пустым .

Мультиграфом называется граф, в котором пары вершин могут быть соединены более чем одним ребром, то есть содершащий кратные рёбра , но не содержащий петель.

Граф без дуг (то есть неориентированный), без петель и кратных рёбер называется обыкновенным . Обыкновенный граф изображён на рисунке ниже.

Граф заданного типа называют полным , если он содержит все возможные для этого типа рёбра (при неизменном множестве вершин). Так, в полном обыкновенном графе каждая пара различных вершин соединена ровно одним звеном (рисунок ниже).

Двудольный граф

Граф называется двудольным , если множество его вершин можно разбить на два подмножества так, чтобы никакое ребро не соединяло вершины одного и того же подмножества.

Пример 1. Построить полный двудольный граф.

Полный двудольный граф состоит из двух множеств вершин и из всевозможных звеньев, соединяющих вершины одного множества с вершинами другого множества (рисунок ниже).

Эйлеров граф

Мы уже касались задачи о кёнигсбергских мостах . Отрицательное решение Эйлером этой задачи привело к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данной графе цикл, содержащий все вершины и все рёбра? Граф, в котором это возможно, называется эйлеровым графом.

Итак, эйлеровым графом называется граф, в котором можно обойти все вершины и при этом пройти одно ребро только один раз. В нём каждая вершина должна иметь только чётное число рёбер.

Пример 2. Является ли полный граф с одинаковым числом n рёбер, которым инцидентна каждая вершина, эйлеровым графом? Объяснить ответ. Привести примеры.

Ответ. Если n - нечётное число, то каждая вершина инцидентна n -1 рёбрам. В таком случае данный граф является эйлеровым графом. Примеры таких графов на рисунке ниже.

Регулярный граф

Регулярным графом называется связный граф, все вершины которого имеют одинаковую степень k . Таким образом, на рисунке к примеру 2 изображены примеры регулярных графов, называемых по степени его вершин 4-регулярными и 2-регулярными графами или регулярными графами 4-й степени и 2-й степени.

Число вершин регулярного графа k -й степени не может быть меньше k +1. У регулярного графа нечётной степени может быть лишь чётное число вершин.

Пример 3. Построить регулярный граф, в котором самый короткий цикл имеет длину 4.

Решение. Рассуждаем так: для того, чтобы длина цикла удовлетворяла заданному условию, требуется, чтобы число вершин графа было кратно четырём. Если число вершин равно четырём, то получится граф, изображённый на рисунке ниже. Он является регулярным, но в нём самый короткий цикл имеет длину 3.

Увеличиваем число вершин до восьми (следующее число, кратное четырём). Соединяем вершины рёбрами так, чтобы степени вершин были равны трём. Получаем следующий граф, удовлетворяющий условиям задачи.

Гамильтонов граф

Гамильтоновым графом называется граф, содержащий гамильтонов цикл. Гамильтоновым циклом называется простой цикл, проходящий через все вершины рассматриваемого графа. Таким образом, говоря проще, гамильтонов граф - это такой граф, в котором можно обойти все вершины и каждая вершина при обходе повторяется лишь один раз. Пример гамильтонова графа - на рисунке ниже.

Пример 4. Задан двудольный граф, в котором n - число вершин из множества A , а m - число вершин из множества B . В каком случае граф будет эйлеровым графом, а в каком случае - гамильтоновым графом?

Математика оперирует не содержанием вещей, а их структурой, абстрагируя ее из всего того, что дано как целое. Отвлечение от качеств и свойств предмета позволяет выявить у данного предмета его основу, неотъемлемую часть, то, что поставит его в один ряд с непохожими на него, на первый взгляд, предметами. Теория графов – это раздел математики, поэтому и в ней используется принцип отвлечения: не важно, что представляет собой предмет, важно лишь то, является ли он графом, т. е. обладает ли обязательными для графов свойствами.

Прежде чем перейти к изучению способов представления графа, рассмотрим примеры, дадим определение графу и ознакомимся с основными понятиями теории графов. Здесь не будут рассмотрены все аспекты теории графов (этого и не требуется), но, по большой части, те, что понадобятся нам в дальнейшем.

В своей жизни мы, так или иначе, соприкасались с объектами, имеющими структуру графа. К таким объектам относятся разного рода маршруты общественного транспорта: система метрополитена, автобусные маршруту и т.п. В частности, программисту знакома компьютерная сеть, также являющаяся графом (рис. 3.1). Общее здесь это наличие точек, соединенных линиями. Так в компьютерной сети точками являются отдельные серверы, а линиями – различные виды электрических сигналов. В метрополитене первое – станции, второе – туннели, проложенные между ними. В теории графов точки именуется вершинами, или узлами , а линии – ребрами, или дугами . Таким образом, граф – это совокупность вершин, соединённых ребрами.

Вернемся к компьютерной сети. Она обладает определенной топологией, и может быть условно изображена в виде некоторого числа компьютеров и путей их соединяющих. На рисунке ниже в качестве примера показана полносвязная топология .

Рисунок 3.1 – Компьютерная сеть

Это, по сути, граф. Пять компьютеров являются вершинами, а соединения (пути передачи сигналов) между ними – ребрами. Заменив компьютеры вершинами, мы получим математический объект – граф, который имеет 10 ребер и 5 вершин. Пронумеровать вершины можно произвольным образом, а не обязательно так, как это сделано на рисунке.

Вот некоторые важные обозначения, используемые в теории графов:

· G =(V , E ), здесь G – граф, V – его вершины, а E – ребра;

· |V | – порядок (число вершин);

· |E | – размер графа (число рёбер).

В нашем случае (рис. 1) |V |=5, |E |=10;

Когда из любой вершины доступна любая другая вершина, то такой граф называется неориентированным связным графом (рис. 3.1). Если же граф связный, но это условие не выполняется, тогда такой граф называется ориентированным или орграфом (рис. 3.2). Ребра орграфа принято называть дугами .


В ориентированных и неориентированных графах имеется понятие степени вершины . Степень вершины – это количество ребер, соединяющих ее с другими вершинами. Степень входа вершины – количество входящих в эту вершину ребер, степень выхода – количество исходящих ребер. Сумма всех степеней графа равна удвоенному количеству всех его ребер. Для рисунка 2 сумма всех степеней равна 20.

Рисунок 3.2 – Ориентированный граф

В орграфе, в отличие от неориентированного графа, имеется возможность двигаться из вершины h в вершину s без промежуточных вершин, лишь тогда когда дуга выходит из h и входит в s , но не наоборот.

Ориентированные графы имеют следующую форму записи:

G =(V , A ), где V – вершины, A – направленные ребра.

Третий тип графов – смешанные графы (рис. 3.3). Они имеют как направленные ребра, так и ненаправленные. Формально смешанный граф записывается так: G =(V , E , A ), где каждая из букв в скобках обозначает тоже, что ей приписывалось ранее.

Рисунок 3.3 – Смешанный граф

На рисунке 3 изображен смешанный граф. Одни дуги направленные [(e , a ), (e , c ), (a , b ), (c , a ), (d , b )], другие – ненаправленные [(e , d ), (e , b ), (d , c )…].

Когда у ребра оба конца совпадают, т. е. ребро выходит из некоторой вершины F и входит в нее, то такое ребро называется петлей (рис. 3.4).

Рисунок 3.4 – Петли графа

Два или более графов на первый взгляд могут показаться разными по своей структуре, что возникает вследствие различного их изображения. Но это не всегда так. Возьмем два графа (рис. 3.5). Они эквивалентны друг другу, ведь не изменяя структуру одного графа можно построить другой. Такие графы называются изоморфными , т. е. обладающими тем свойством, что какая-либо вершина с определенным числом ребер в одном графе имеет тождественную вершину в другом.


Рисунок 3.5 – Изоморфные графы

Когда каждому ребру графа поставлено в соответствие некоторое значение, называемое весом ребра , тогда такой граф взвешенный. В разных задачах в качестве веса могут выступать различные виды измерений, например длины, цены маршруты и т. п. В графическом представлении графа весовые значения указываются, как правило, рядом с ребрами.

В любом из рассмотренных нами графов имеется возможность выделить путь и, причем не один. Путь – это последовательность вершин, каждая из которых соединена с соседней вершиной посредством ребра. Если первая и последняя вершины совпадают, то такой путь называется циклом . Длина пути определяется количеством составляющих его ребер. Например, на рисунке 4.а путем служит последовательность [(e ), (a ), (b ), (c )]. Этот путь является подграфом, так как к нему применимо определение последнего, а именно: граф G’ =(V’ , E’ ) является подграфом графа G =(V , E ), только тогда когда V’ и E’ принадлежат V , E .

Граф, как и большинство других математических объектов, может быть представлен на компьютере (сохранен в его памяти). Существуют несколько способов его интерпретации, вот наиболее известные из них:

· матрица смежности;

· матрица инцидентности;

· список смежности;

· список ребер.

Использование двух первых методов предполагает хранение графа в виде двумерного массива (матрицы). Причем размеры этих массивов, зависят от количества вершин и/или ребер в конкретном графе. Так размер матрицы смежности n ×n , где n – число вершин, а матрицы инцидентности n ×m , n – число вершин, m – число ребер в графе.

Определения

Теория графов не обладает устоявшейся терминологией. В различных статьях под одними и теми же терминами понимаются разные вещи. Приводимые ниже определения - наиболее часто встречаемые.

Граф

Граф или неориентированный граф G - это упорядоченная пара G : = (V ,E )

  • V это множество вершин или узлов ,
  • E это множество пар (в случае неориентированного графа - неупорядоченных) различных вершин, называемых рёбрами .

V (а значит и E ) обычно считаются конечными множествами. Многие хорошие результаты, полученные для конечных графов, неверны (или каким-либо образом отличаются) для бесконечных графов . Это происходит потому, что ряд соображений становятся ложными в случае бесконечных множеств.

Вершины и рёбра графа называются также элементами графа, число вершин в графе | V | - порядком , число рёбер | E | - размером графа.

Вершины u и v называются концевыми вершинами (или просто концами ) ребра e = {u ,v } . Ребро, в свою очередь, соединяет эти вершины. Две концевые вершины одного и того же ребра называются соседними .

Два ребра называются смежными , если они имеют общую концевую вершину.

Два ребра называются кратными , если множества их концевых вершин совпадают.

Ребро называется петлёй , если его концы совпадают, то есть e = {v ,v } .

Степенью degV вершины V называют количество рёбер, для которых она является концевой (при этом петли считают дважды).

Вершина называется изолированной , если она не является концом ни для одного ребра; висячей (или листом ), если она является концом ровно одного ребра.

Ориентированный граф

Ориентированный граф (сокращённо орграф ) G - это упорядоченная пара G : = (V ,A ) , для которой выполнены следующие условия:

  • V это множество вершин или узлов ,
  • A это множество (упорядоченных) пар различных вершин, называемых дугами или ориентированными рёбрами .

Дуга - это упорядоченная пара вершин (v, w) , где вершину v называют началом, а w - концом дуги. Можно сказать, что дуга v w ведёт от вершины v к вершине w .

Смешанный граф

Смешанный граф G - это граф, в котором некоторые рёбра могут быть ориентированными, а некоторые - неориентированными. Записывается упорядоченной тройкой G : = (V ,E ,A ) , где V , E и A определены так же, как выше.

Понятно, что ориентированный и неориентированный графы являются частными случаями смешанного.

Прочие связанные определения

Путём (или цепью ) в графе называют конечную последовательность вершин, в которой каждая вершина (кроме последней) соединена со следующей в последовательности вершин ребром.

Ориентированным путём в орграфе называют конечную последовательность вершин v i , для которой все пары (v i ,v i + 1) являются (ориентированными) рёбрами.

Циклом называют путь, в котором первая и последняя вершины совпадают. При этом длиной пути (или цикла) называют число составляющих его рёбер . Заметим, что если вершины u и v являются концами некоторого ребра, то согласно данному определению, последовательность (u ,v ,u ) является циклом. Чтобы избежать таких «вырожденных» случаев, вводят следующие понятия.

Путь (или цикл) называют простым , если ребра в нём не повторяются; элементарным , если он простой и вершины в нём не повторяются. Несложно видеть, что:

  • Всякий путь, соединяющий две вершины, содержит элементарный путь, соединяющий те же две вершины.
  • Всякий простой неэлементарный путь содержит элементарный цикл .
  • Всякий простой цикл, проходящий через некоторую вершину (или ребро), содержит элементарный (под-)цикл, проходящий через ту же вершину (или ребро).

Более абстрактно, граф можно задать как тройку , где V и E - некоторые множества (вершин и рёбер , соотв.), а - функция инцидентности (или инцидентор ), сопоставляющая каждому ребру (упорядоченную или неупорядоченную) пару вершин u и v из V (его концов ). Частными случаями этого понятия являются:

Под данное выше определение не подходят некоторые другие обобщения:

  • гиперграф - если ребро может соединять более двух вершин .
  • ультраграф - если между элементами x i и u j существуют бинарные отношения инцидентности .

Литература

  • Оре О. Теория графов. М.: Наука, 1968. 336с. http://eqworld.ipmnet.ru/ru/library/books/Ore1965ru.djvu
  • Уилсон Р. Введение в теорию графов. Пер с англ. М.: Мир, 1977. 208с. http://eqworld.ipmnet.ru/ru/library/books/Uilson1977ru.djvu
  • Харари Ф. Теория графов. М.: Мир, 1973. http://eqworld.ipmnet.ru/ru/library/books/Harari1973ru.djvu
  • Кормен Т. М.и др. Часть VI. Алгоритмы для работы с графами // Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. - 2-е изд. - М.: «Вильямс» , 2006. - С. 1296. - ISBN 0-07-013151-1
  • Салий В. Н. Богомолов А. М. Алгебраические основы теории дискретных систем. - М.: Физико-математическая литература, 1997. - ISBN 5-02-015033-9
  • Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1990. 384с. (Изд.2, испр. М.: УРСС, 2009. 392 с.)
  • Кирсанов М. Н. Графы в Maple. М.: Физматлит, 2007. - 168 c.

Основные вопросы:

Сведения из истории графов. Граф и
его элементы.
Пути и маршруты в графах
Связные графы. Деревья
Операции над графами.

Теория графов представляет собой
раздел математики, имеющий
широкие практические приложения.
Теория графов – область
дискретной математики,
особенностью которой является
геометрический подход к изучению
объектов.

История возникновения графов

Впервые основы теории графов
появились в работах Леонарда
Эйлера (1707-1783;
швейцарский, немецкий и
российский математик) , в
которых он описывал решение
головоломок и математических
развлекательных задач.
Теория графов началась с
решения Эйлером задачи о
семи мостах
Кёнигсберга.

Издавна среди жителей Кёнигсберга была распространена такая загадка:
как пройти по всем мостам (через реку Преголя), не проходя ни по одному
из них дважды? Многие пытались решить эту задачу как теоретически, так и
практически, во время прогулок. Но никому это не удавалось, однако не
удавалось и доказать, что это даже теоретически невозможно.
На упрощённой схеме части
города (графе) мостам
соответствуют линии (дуги
графа), а частям города -
точки соединения линий
(вершины графа).
В ходе рассуждений Эйлер пришёл к
следующим выводам: Невозможно пройти
по всем мостам, не проходя ни по одному из
них дважды.

История возникновения графов

Термин "граф" впервые появился в книге
венгерского математика Д. Кенига в 1936 г., хотя
начальные важнейшие теоремы о графах
восходят к Л. Эйлеру.

В основе теории лежит понятие графа.

- совокупность конечного числа
точек, называемых вершинами графа, и
попарно соединяющих некоторые из этих
вершин линий, называемых ребрами или
дугами графа. Иногда граф в целом
можно обозначать одной заглавной
буквой.
G V , X называется пара двух
конечных множеств: множество точек V и
множество линий X (ребер, дуг),
соединяющих некоторые пары точек.

Состав графа

Граф состоит из вершин, связанных линиями. Вершины
графа обозначают латинскими буквами A, B, C, D или
цифрами.
Направленная линия (со стрелкой) называется дугой.
Линия ненаправленная (без стрелки) называется ребром.
Линия, выходящая из некоторой вершины и входящая в
неё же, называется петлей.
дуга
А
ребро
В
петля
С

Ориентированный граф -

граф, вершины которого соединены дугами. С
помощью таких графов могут быть представлены
схемы односторонних отношений.
Юра
Аня
Маша
Коля
Витя

Взвешенный граф

Это граф, рёбрам или дугам которого поставлены
в соответствие числовые величины (они могут
обозначать, например, расстояние между городами
или стоимость перевозки).
Вес графа равен сумме весов его рёбер.
4
B
C
2
3
2
A
1
E
D
A
B
C
D
Е
A B C D Е
3 1
4
2
3 4
2
1
2 2
Таблице (она называется весовой
матрицей) соответствует граф.

Если
ребро графа G соединяет две его
вершины V и W, (т.е. V ,W X), то говорят,
что это ребро им инцидентно.
Две вершины графа называются смежными,
если существует инцидентное им ребро: на
рисунке смежными являются вершины А и В,
А и С.
А
С
В

Если граф G имеет ребро, у которого начало
и конец совпадают, то это ребро называется
петлёй. На рисунке ребро q(С, С) – петля.
q
E
С
A
D
B

Два ребра называются смежными, если они
имеют общую вершину.
На рисунке смежными являются, например,
рёбра х1 и х2 с общей вершиной С.
D
х5
х1
F
С
х4
х2
G
х7
х3
E
х6
B
H
A

Рёбра, которые начинаются в одной и
той же вершине, заканчиваются также
в одной и той же вершине, называются
кратными, или параллельными.
Количество одинаковых пар вида
(V , W) называется кратностью ребра (V , W)
Число рёбер, инцидентных вершине А,
называется степенью этой вершины и
обозначается deg(A) (от англ. degree –
степень).

На рисунке кратными являются, например,
рёбра х1(А, В), х2(А, В). Вершинам А и С
инцидентны рёбра х3, х4, х5. Следовательно,
ребро АС имеет кратность, равную 3, а ребро
АВ – кратность, равную 2.
А
х4
х1
х3
С
х2
х5
В

На рисунке вершина А имеет степень,
равную 1, вершина С – 4, вершина D – 2.
Записывается это в виде: deg(A)=1, deg(C)=4,
deg(D)=2.
D
х5
х1
F
С
х4
х2
G
х7
х3
E
х6
B
H
A

Вершина графа, имеющая степень, равную нулю,
называется изолированной.
Граф, состоящий из изолированных вершин,
называется нуль-графом.
Вершина графа, имеющая степень, равную 1,
называется висячей.
Граф, не имеющий ребер (дуг), называется
пустым.
E
C
A
D
B
На рисунке вершина
Е – изолированная:
deg(E)=0.

На рисунке вершины А, В, Е, G, H – висячие.
D
х5
х1
F
С
х4
х2
G
х7
х3
E
х6
B
H
A

Теорема 1. В графе G V , X сумма
степеней всех его вершин – число чётное,
равное удвоенному числу рёбер графа:
n
deg(V) 2m
i 1
i
Количество ребер в любом графе равно
половине суммы степеней его вершин.
где n V
- число вершин;
m X - число рёбер графа.

Вершина называется чётной (нечётной),
если её степень – чётное (нечётное) число.
На рисунке deg(D)=2, deg(F)=3, значит у
графа вершина D является чётной, а F –
нечётной.
х5
D
х1
F
С
х4
х2
G
х7
х3
E
х6
B
H
A

Задача. В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединен ровно с пятью

другими?

Теорема 2. Всякий (неориентированный)
граф содержит четное число нечетных
вершин.
Следствие. Невозможно начертить граф с
нечётным числом нечётных вершин.
Граф G называется полным,
если любые две его различные
вершины соединены одним и
только одним ребром.

Задача. В классе 30 человек. Может ли быть так, что 9 человек имеют по 3 друга, 11 - по 4 друга, а 10 - по 5 друзей?

Дополнением графа G V , X называется
граф G V , X с теми же вершинами V, что и
граф G, и имеющий те и только те рёбра X ,
которые необходимо добавить к графу G, чтобы он
стал полным. На рисунке дополнением графа G1 до
графа G является граф
G1
G
G1
G1

Закономерность 1.
Закономерность 2.
Степени вершин
Сумма степеней
полного графа
одинаковы, и
каждая из них на 1
меньше числа
вершин этого
графа
вершин графа число
четное, равное
удвоенному числу
ребер графа. Эта
закономерность
справедлива не
только для полного,
но и для любого
графа.

Закономерность 3.
Закономерность 4.
Число нечетных
Невозможно
вершин любого
графа четно.
начертить граф с
нечетным числом
нечетных вершин.

Закономерность 5.
Закономерность 6.
Если все вершины
Граф, имеющий всего
графа четные, то
можно не отрывая
карандаш от бумаги
(«одним росчерком»),
проводя по каждому
ребру только один раз,
начертить этот граф.
Движение можно
начать с любой
вершины и закончить
его в той же вершине.
две нечетные
вершины, можно
начертить, не
отрывая карандаш
от бумаги, при этом
движение нужно
начать с одной из
этих нечетных
вершин и закончить
во второй из них.

Закономерность 7.
Граф, имеющий более
двух нечетных
вершин, невозможно
начертить «одним
росчерком». Фигура
(граф), которую можно
начертить не отрывая
карандаш от бумаги,
называется
уникурсальной.

Пути и маршруты в графах

Путем в ориентированном графе называется
последовательность дуг, в которой конечная
вершина любой дуги, отличной от последней,
является начальной вершиной следующей дуги.
Вершина, от которой проложен маршрут,
называется началом пути, вершина в конце
маршрута - конец пути.
Путь, в котором каждая вершина используется
не более одного раза, называется простым
путем.
Длиной пути в графе называется количество дуг
(ребер), составляющих этот путь.

В качестве примера рассмотрим орграф,
представленный на рисунке. Одним из существующих
путей, соединяющих вершины 1 и 3, является
последовательность вершин 1, 2, 1, 4, 3. Единственным
простым путем для той же пары вершин является
последовательность 1, 4, 3. Пути из вершины 1 в
вершину 5 для того же графа не существует.

Неориентированный граф называется
связным, если существует хотя бы один путь
между каждой парой вершин.
Орграф называется связным, если связен
неориентированный граф, который
получается из исходного ориентированного
заменой всех дуг на ребра.

Путь называется замкнутым, если
начальная и конечная вершины совпадают.
Замкнутый путь называется циклом, если все
его вершины (кроме начальной и конечной)
различны.
Рассмотрим граф. Для него путь 2, 1, 6, 5, 4, 1,
2 является замкнутым; а путь 1, 6, 5, 4, 1
является циклом.

Последовательность попарно смежных
вершин неориентированного графа, т.е.
последовательность рёбер
неориентированного графа, в которой вторая
вершина предыдущего ребра совпадает с
первой вершиной следующего, называется
маршрутом.
Число рёбер маршрута называется длиной
маршрута.
Если начальная вершина маршрута совпадает
с конечной, то такой маршрут называется
замкнутым или циклом.

На рисунке HCDFD – маршрут длиной 4.
Обозначение: |HCDFD|=4. Маршрут принято
задавать
как
последовательность
рёбер,
поскольку это удобно при наличии кратных
рёбер.
х
D
х1
5
F
С
х4
х2
G
х7
х3
E
х6
B
H
A

В графе на рисунке (t, s, p, r), (u, s, t, r) – циклы
длиной 4, (r, t, q, s, u) – цикл длиной 5, (t, s, u, r, t, s, p, r)
– 8-цикл, (p, u) – 2-цикл, петля (q) – 1-цикл.
E
q
C
s
A
p
t
D
r
B
u

Операции над графами

Одноместные операции
1. Удаление ребра графа - при этом все вершины графа
сохраняются
2. Добавление ребра графа между двумя
существующими вершинами.
3. Удаление вершины (вместе с инцидентными
ребрами).
4. Добавление вершины (которую можно соединить с
некоторыми вершинами графа).
5. Стягивание ребра - отождествление пары вершин, т.е.
удаление пары смежных вершин, и добавление новой
вершины, смежной с теми вершинами, которые были
смежны, хотя бы одной из удаленных вершин)
6. Подразбиение ребра с- удаление ребра и добавление
новой вершины, которая соединяется ребром с каждой из
вершин удаленного ребра.

Операции над графами

Двуместные операции
Объединением графов G1 (V1 , X 1) и G2 (V2 , X 2)
называется граф G G1 G2 , множество вершин
которого V V1 V2 , а множество рёбер X X 1 X 2 .
Пересечением графов G1 и G2 называется
граф G G1 G2 , для которого X X 1 X 2 множество рёбер, а V V1 V2 - множество вершин.
Кольцевой суммой двух графов называется граф
G G1 G2 , порождённый множеством вершин
т.е.
V V1 V2 и множеством рёбер (X1 X 2) \ (X1 X 2) ,
множеством рёбер, содержащихся либо в G1 , либо в
G2 , но не в G1 G2 .

V4
V2
х3
х2
V3
х4
V1
х1
V5
х2
х7
х3
х4
х4
V1
х7
V1
G=G1UG2
V3
х4
V5
х2
V1
х3
G=G1∩G2
V2
х1
G2
V4
V2
х5 х6
х6
V3
V1
V4
V3
V4
х5
х3
х1
G1
V2
V5
V2
V4
х5 х6V
3
х7
G=G1 G2

Применение графов

С
помощью
графов
упрощается
математических задач, головоломок,
смекалку.
решение
задач на
дальше

Применение графов

Лабиринт - это граф. А исследовать его - это найти
путь в этом графе.
дальше

Использует графы и
дворянство.
На рисунке приведена
часть генеалогического
дерева
знаменитого
дворянского рода Л. Н.
Толстого. Здесь его
вершины – члены этого
рода, а связывающие их
отрезки – отношения
родственности,
ведущие от родителей к
детям.
дальше

Применение графов

Графами являются блок – схемы программ для
ЭВМ.
дальше

Применение графов

Типичными графами на
географических картах являются
изображения железных дорог.
дальше

Применение графов

Типичными графами на картах города
являются схемы движения городского
транспорта.
дальше

Выводы

Графы – это замечательные математические
объекты, с помощью, которых можно решать
математические, экономические и логические
задачи. Также можно решать различные
головоломки и упрощать условия задач по
физике, химии, электронике, автоматике. Графы
используются
при
составлении
карт
и
генеалогических древ.
В математике даже есть специальный раздел,
который так и называется: «Теория графов».
содержание

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«В математике следует помнить не формулы, а процесс мышления…»

Е. И. Игнатьев

Теория графов в настоящее время является интенсивно развивающимся разделом математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации, что очень важно для нормального функционирования общественной жизни. Именно этот фактор определяет актуальность их более подробного изучения. Поэтому тематика данной работы достаточно актуальна.

Цель исследовательской работы: выяснить особенности применения теории графов в различных областях знаний и при решении логических задач.

Цель определила следующие задачи:

    познакомиться с историей теории графов;

    изучить основные понятия теории графов и основные характеристики графов;

    показать практическое применение теории графов в различных областях знаний;

    рассмотреть способы решения задач с помощью графов и составить собственные задачи.

Объект исследования: сфера деятельности человека на предмет применения метода графов.

Предмет исследования: раздел математики «Теория графов».

Гипотеза. Мы предполагаем, что изучение теории графов может помочь учащимся решать логические задачи по математике, что определит их дальнейшие интересы.

Методы исследовательской работы:

В ходе нашего исследования были использованы такие методы, как:

1) Работа с различными источниками информации.

2) Описание, сбор, систематизация материала.

3) Наблюдение, анализ и сравнение.

4) Составление задач.

Теоретическая и практическая значимость данной работы определяется тем, что результаты могут быть использованы на информатике, математике, геометрии, черчении и классных часах, а также для широкого круга читателей, заинтересованных данной темой. Исследовательская работа имеет выраженную практическую направленность, так как в работе автором представлены многочисленные примеры применения графов во многих областях знаний, составлены свои задачи. Данный материал можно использовать на факультативных занятиях по математике.

ГЛАВА I. ТЕОРЕТИЧЕСКИЙ ОБЗОР МАТЕРИАЛА ПО ТЕМЕ ИССЛЕДОВАНИЯ

    1. Теория графов. Основные понятия

В математике «граф» можно изобразить в виде картинки, которая представляет собой некоторое количество точек, соединенных линиями. «Граф» происходит от латинского слова «графио» - пишу, как и известный дворянский титул.

В математике определение графа дается так:

Термин «граф» в математике определяется следующим образом:

Граф - это конечное множество точек - вершин , которые могут быть соединены линиями - ребрами .

В качестве примеров графов могут выступать чертежи многоугольников, электросхемы, схематичное изображение авиалиний, метро, дорог и т.п. Генеалогическое дерево также является графом, где вершинами служат члены рода, а родственные связи выступают в качестве ребер графа.

Рис. 1 Примеры графов

Число ребер, которое принадлежит одной вершине, называется степенью вершины графа . Если степень вершины нечетное число, вершина называется - нечетной . Если степень вершины число четное, то и вершина называется четной .

Рис. 2 Вершина графа

Нуль-граф - это граф, состоящий только из изолированных вершин, не соединенных ребрами.

Полный граф - это граф, каждая пара вершин которого соединена ребром. N-угольник, в котором проведены все диагонали, может служить примеров полного графа.

Если в графе выбрать такой путь, когда начальная и конечная точка совпадают, то такой путь называется циклом графа . Если прохождение через каждую вершину графа происходит не более одного раза, то цикл называется простым .

Если в графе каждые две вершины связаны ребром, то это связанный граф. Граф называется несвязанным , если в нем есть хотя бы одна пара несвязанных вершин.

Если граф связанный, но не содержит циклов, то такой граф называетсядеревом .

    1. Характеристики графов

Путь графа - это такая последовательность, в которой каждые два соседних ребра, имеющих одну общую вершину, встречаются только один раз.

Длина кратчайшей цепи из вершин a и b называется расстоянием между вершинами a и b.

Вершина а называется центром графа, если расстояние между вершиной а и любой другой вершиной является наименьшим и из возможных. Такое расстояние есть радиус графа.

Максимально возможное расстояние между двумя любыми вершинами графа называется диаметром графа.

Раскраска графов и применение.

Если внимательно посмотреть на географическую карту, то можно увидеть железные или шоссейные дороги, которые являются графами. Кроме этого на катре есть граф, который состоит из границ между странами (районами, областями).

В 1852 году английскому студенту Френсису Гутри поставили задачу раскрасить карту Великобритани, выделив каждое графство отдельным цветом. Из-за небольшого выбора красок Гутри использовал их повторно. Он подбирал цвета так, чтобы те графства, которые имеют общий участок границы, обязательно окрашивались в разные цвета. Возник вопрос, какое наименьшее количество красок необходимо для раскрашивания различных карт. Френсис Гутри предположил, хотя и не смог доказать, что четырех цветов будет достаточно. Эта проблема бурно обсуждалась в студенческих кругах, но позже была забыта.

«Проблема четырех красок» вызывала все больший интерес, но так и не была решена, даже выдающимися математиками. В 1890 году английским математиком Перси Хивудом было доказано, что для раскрашивания любой карты будет достаточно пяти красок. А только 1968 году смогли доказать, что для раскрашивания карты, на которой изображено меньше сорока стран, будет достаточно 4 цветов.

В 1976 году эта задача была решена при использовании компьютера двумя американскими математиками Кеннетом Аппелем и Вольфгантом Хакеном. Для ее решения все карты были поделены на 2000 типов. Для компьютера была создана программа, которая исследовала все типы с целью выяления таких карт, для раскрашивания которых будет недостаточно четырех красок. Только три типа карт компьютер исследовать не смог, поэтому математики изучали их самостоятельно. В результате было установлено, что для раскрашивания всех 2000 типов карт будет достаточно 4 красок. Им было объявлено о решении проблемы четырех красок. В этот день почтовое отделение при университете, в котором работали Аппель и Хакен на всех марках ставило штемпель со словами: «Четырех красок достаточно».

Можно представить задачу о четырех красках несколько иначе.

Для этого рассмотрим произвольную карту, представив ее виде графа: столицы государств являются вершинами графа, а ребра графа связывают те вершины (столицы), государства которых имеют общую границу. Для получения такого графа формулируется следующая задача - необходимо раскрасить граф с помощью четырех цветов так, чтобы вершины, имеющие общее ребро были раскрашены разными цветами.

Эйлеровы и Гамильтоновы графы

В 1859 году английским математиком Уильямом Гамильтоном была выпущена в продажу головоломка - деревянный додекаэдр (двенадцатигранник), двадцать вершин которого были обозначены гвоздиками. Каждая вершина имела название одного из крупнейших городов мира - Кантон, Дели, Брюссель, и т.д. Задача заключалась в нахождении замкнутого пути, который проходит по ребрам многогранника, побывав в каждой вершине только один раз. Для отмечания пути использовался шнур, который цепляли за гвоздики.

Гамильтоновым циклом называется граф, путь которого является простым циклом, который проходит через все вершины графа по одному разу.

На реке Прегель расположен город Калининград (бывший Кенигсберг). Река омывала два острова, которые между собой и с берегами были соединены мостами. Старых мостов сейчас уже нет. Память о них осталась только на карте города.

Однажды один житель города спросил у своего знакомого, можно ли пройти по всем мостам, побывать на каждом только один раз и вернуться к тому месту откуда началась прогулка. Эта задача заинтересовала многих горожан, но решить ее никто не смог. Этот вопрос вызвал заинтересованность ученных многих стран. Решение проблемы получил математик Леонард Эйлер. Кроме этого он сформулировал общий подход к решению таких задач. Для этого он превратил карту в граф. Вершинами этого графа стала суша, а ребрами - мосты, ее соединяющие.

При решении задачи про мосты Кенигсберга Эйлеру удалось сформулировать свойства графов.

    Начертить граф, начав движение с одной вершины и окончив в той же вершине одним росчерком (дважды не проводя по одной и той же линии и не отрывая карандаша от бумаги) возможно в том случае, если все вершины графа четные.

    Если есть граф с двумя нечетными вершинами, то его вершины тоже можно соединить одним росчерком. Для этого нужно начать с одной, а закончить на другой любой нечетной вершине.

    Если есть граф с числом нечетных вершин больше двух, то граф невозможно начертить одним росчерком.

Если применять эти свойства на задачу о мостах, то можно увидеть, что все вершины исследуемого графа нечетные, значит, этот граф нельзя соединить одним росчерком, т.е. невозможно пройти по всем мостам один раз и закончить путь в том месте, где он был начат.

Если граф имеет цикл (не обязательно простой), содержащий все рѐбра графа по одному разу, то такой цикл называется Эйлеровым циклом . Эйлерова цепь (путь, цикл, контур) — цепь (путь, цикл, контур), содержащая все рѐбра (дуги) графа по одному разу.

ГЛАВА II. ОПИСАНИЕ ИССЛЕДОВАНИЯ И ЕГО РЕЗУЛЬТАТЫ

2.1. Этапы проведения исследования

Для проверки гипотезы исследование включало три этапа (таблица 1):

Этапы исследования

Таблица 1.

Используемые методы

Теоретическое исследование проблемы

Изучить и проанализировать познавательную и научную литературу.

 самостоятельное размышление;

 изучение информационных источников;

 поиск необходимой литературы.

Практическое исследование проблемы

Рассмотреть и проанализировать области практического применения графов;

 наблюдение;

 анализ;

 сравнение;

 анкетирование.

3 этап. Практическое использование результатов

Обобщить изученную информацию;

 систематизация;

 отчет (устный, письменный, с демонстрацией материалов)

сентябрь 2017 г.

2.2. Области практического применения графов

Графы и информация

Теория информации широко использует свойства двоичных деревьев.

Например, если нужно закодировать некоторое число сообщений в виде определенных последовательностей нулей и единиц различной длины. Код считается наилучшим, для заданной вероятности кодовых слов, если средняя длина слов наименьшая в сравнении другими распределениями вероятности. Для решения такой задачи Хаффман предложил алгоритм, в котором, код представляется деревом-графом в рамках теории поиска. Для каждой вершины предлагается вопрос, ответом на который может быть либо, «да», либо «нет» - что соответствует двум ребрам, выходящим из вершины. Построение такого дерева завершается после установления того, что требовалось. Это может применяться в интервьюировании нескольких человек, когда заранее неизвестен ответ на предыдущий вопрос, план интервью представляется в виде двоичного дерева.

Графы и химия

Еще А. Кэли рассмотрел задачу о возможных структурах насыщенных (или предельных) углеводородов, молекулы которых задаются формулой:

CnH 2n+2

Все атомы углеводорода 4-хвалентны, все атомы водорода 1-валентны. Структурные формулы простейших углеводородов показаны на рисунке.

Каждую молекулу предельного углеводорода можно представить в виде дерева. При удалении всех атомов водорода, атомы углеводорода, которые остались, образуют дерево с вершинами, степень которых не выше четырех. Значит, количество возможных искомых структур (гомологов данного вещества) равняется числу деревьев, степени вершин которых, не больше 4. Это задача сводится к задаче о перечислении деревьев отдельного вида. Д. Пойа рассмотрел эту задачу и ее обобщения.

Графы и биология

Процесс размножения бактерий - это одна из разновидностей ветвящихся процессов, встречающихся в биологической теории. Пусть каждая бактерия по истечению определенного времени или погибает, или делится на две. Следовательно, для одной бактерии мы получим двоичное дерево размножения ее потомства. Вопрос задачи заключается в следующем, какое количество случаев содержит k потомков в n-м поколение одной бактерии? Данное соотношение в биологии носит название процесс Гальтона-Ватсона, которое обозначает необходимое количество нужных случаев.

Графы и физика

Сложная утомительная задача для любого радиолюбителя - создание печатных схем (пластина диэлектрика - изолирующего материала и вытравленные дорожки в виде металлических полосок). Пересечение дорожек происходит только в определенных точках (местах установления триодов, резисторов, диодов и пр.) по определенным правилам. В результате перед ученым стоит задача вычертить плоский граф, с вершинами в

Итак, все выше сказанное подтверждает практическую ценность графов.

Математика интернета

Интернет - всемирная система объединенных компьютерных сетей для хранения и передачи информации.

Сеть интернет можно представить в виде графа, где вершины графа - это интернет сайты, а ребра - это ссылки (гиперссылки), идущие с одних сайтов на другие.

Веб-граф (Интернет), имеющий миллиарды вершин и ребер, постоянно меняется - спонтанно добавляются и исчезают сайты, пропадают и добавляются ссылки. Однако, Интернет имеет математическую структуру, подчиняется теории графов и имеет несколько «устойчивых» свойств.

Веб-граф разрежен. Он содержит всего лишь в несколько раз больше ребер, чем вершин.

Несмотря на разреженность, интернет очень тесен. От одного сайта до другого по ссылкам, можно перейти за 5 - 6 кликов (знаменитая теория «шести рукопожатий»).

Как мы знаем, степень графа - это число ребер, которым принадлежит вершина. Степени вершин веб-графа распределены по определенному закону: доля сайтов (вершин) с большим количеством ссылок (ребер) мала, а сайтов с малым количеством ссылок - велика. Математически это можно записать так:

где - доля вершин определенной степени, - степень вершины, - постоянная, независящая от числа вершин веб-графа, т.е. не меняется в процессе добавления или удаления сайтов (вершин).

Этот степенной закон является универсальным для сложных сетей - от биологических до межбанковских.

Интернет как целое устойчив к случайным атакам на сайты.

Так как уничтожение и создание сайтов происходит независимо и с одинаковой вероятностью, то и веб-граф, с вероятность близкой к 1, сохраняет свою целостность и не разрушается.

Для изучения интернета необходимо строить модель случайного графа. Эта модель должна обладать свойствами реального интернета и не должна быть слишком сложной.

Эта задача пока полностью не решена! Решение этой задачи - построения качественной модели интернета - позволит разработать новые инструменты для улучшения поиска информации, выявления спама, распространения информации.

Построение биологических и экономических моделей началось значительно раньше, чем возникла задача построения математической модели интернета. Однако достижения в развитии и изучении интернета, позволили ответить на многие вопросы, касающиеся всех этих моделей.

Математика интернета востребована многими специалистами: биологами (предсказание роста популяций бактерий), финансистами (риски возникновения кризисов) и т.п. Изучение подобных систем - один из центральных разделов прикладной математики и информатики.

г. Мурманск с помощью графа.

Когда человек приезжает в новый для него город, как правило, первое желание - это посетить главные достопримечательности. Но при этом запас времени зачастую ограничен, а в случае деловой поездки, совсем мал. Следовательно, необходимо планировать знакомство с достопримечательностями заранее. И в построении маршрута отлично помогут графы!

В качестве примера рассмотрим типичный случай прибытия в Мурманск из аэропорта в первый раз. Планируется посетить следующие достопримечательности:

1. Морской православный храм Спас-на-водах;

2. Свято-Никольский собор;

3. Океанариум;

4. Памятник коту Семену;

5. Атомный ледокол Ленин;

6. Парк Огни Мурманска;

7. Парк Долина Уюта;

8. Кольский мост;

9. Музей истории Мурманского морского пароходства;

10. Площадь Пяти углов;

11. Морской торговый порт

Вначале расположим эти места на карте и получим наглядное представление о местоположении и расстоянии между достопримечательностями. Сеть дорог достаточно развита, и перемещение на автомобиле не будет затруднительным.

Достопримечательности на карте (слева) и полученный граф (справа) показаны на соответствующем рисунке ПРИЛОЖЕНИЯ №1. Таким образом, новоприбывший вначале проедет около Кольского моста(и, при желании может пересечь его туда - обратно); затем отдохнет в Парке Огни Мурманска и Долине Уюта и отправится дальше. В итоге оптимальный маршрут составит:

С помощью графа можно также визуализировать схему проведения соцопросов. Примеры представлены в ПРИЛОЖЕНИИ №2. В зависимости от данных ответов опрашиваемому задают разные вопросы. Например, если в социологическом опросе №1 опрашиваемый считает математику важнейшей из наук, у него спросят, уверенно ли он чувствует себя на уроках физики; если же он считает иначе, второй вопрос будет касаться востребованности гуманитарных наук. Вершинами такого графа являются вопросы, а ребрами - варианты ответов.

2.3. Применение теории графов при решении задач

Теория графов применяется при решении задач из многих предметных областей: математика, биология, информатика. Мы изучили принцип решения задач с помощью теории графов и составили собственные задачи по теме исследования.

Задача №1.

Пятеро одноклассников, на встрече выпускников, обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Решение: Обозначим одноклассников вершинами графа. Соединим каждую вершину линиями, с четырьмя другими вершинам. Получаем 10 линий, это и есть рукопожатиями.

Ответ: 10 рукопожатий (каждая линия означает одно рукопожатие).

Задача №2.

У моей бабушке в деревне, возле дома растут 8 деревьев: тополь, дуб, клен, яблоня, лиственница, береза, рябина и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. В какой последовательности расположатся деревья по высоте от самого высокого к самому низкому.

Решение:

Деревья - это вершины графа. Обозначим их первой буквой в кружочке. Проведем стрелки от низкого дерева к более высокому. Сказано, что рябина выше лиственницы, то стрелку ставим от лиственницы к рябине, берёза ниже тополя, то стрелку ставим от тополя к берёзе и т.п. Получаем граф, где видно, что самое низкое дерево - клен, потом яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Ответ: клен, яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Задача №3.

У Мамы есть 2 конверта: обычный и авиа, и 3 марки: квадратная, прямоугольная и треугольная. Сколькими способами Мама может выбрать конверт и марку, чтобы отправить письмо Папе?

Ответ: 6 способов

Задача №4.

Между населенными пунктами A, B, C, D, E построены дороги. Нужно определить длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, длина которых указана на рисунке.

Задача №5.

Тремя одноклассника - Максим, Кирилл и Вова решили заняться спортом и прошли отбор спортивные секции. Известно, что в баскетбольную секцию претендовал 1 мальчик, а в хоккей хотели играть трое. Максим пробовался только в 1 секцию, Кирилл отбирался во все три секции, а Вова в 2. Кого из мальчиков в какую спортивную секцию отобрали?

Решение: Для решения задачи применим графы

Баскетбол Максим

Футбол Кирилл

Хоккей Вова

Так как к баскетболу идет лишь одна стрелка, то Кирилла отобрали в сецию баскетбола . Тогда Кирилл не будет играть в хоккей , а значит, в хоккейную секцию отобрали Максима, который пробовался только в эту секцию, тогда Вова будет футболистом .

Задача №6.

Из-за болезни некоторых преподавателей, завучу школы, требуется составить фрагмент расписания занятий в школе хотя бы на один день, с учетом следующих обстоятельств:

1. Преподаватель ОБЖ согласен дать только последний урок;

2. Преподаватель географии может дать либо второй, либо третий урок;

3. Математик готов дать либо только первый, либо только второй урок;

4. Преподаватель физики может дать либо первый, либо второй, либо третий уроки, но только в одном классе.

Какое расписание может составить завуч школы, чтобы оно удовлетворяло всем преподавателей?

Решение: Эту задачу можно решить перебирая все возможные варианты, но проще, если начертить граф.

1. 1) физика 2. 1) математика 3. 1) математика

2) математика 2) физика 2) география

3) география 3) география 3) физика

4) ОБЖ 4) ОБЖ 4) ОБЖ

Заключение

В данной исследовательской работе была подробно изучена теория графов, доказана гипотеза, что изучение графов может помочь в решении логических задач, кроме того, рассмотрена теорию графов в разных областях науки и составлены свои 7 задач.

Использование графов при обучении обучающихся поиску решения задач позволяет совершенствовать графические умения учащихся и связывать рассуждения специальным языком конечного множества точек, некоторые из которых соединены линиями. Все это способствует проведению работы по обучению учащихся мышлению.

Эффективность учебной деятельности по развитию мышления во многом зависит от степени творческой активности учащихся при решении математических задач. Следовательно, необходимы математические задачи и упражнения, которые бы активизировали мыслительную деятельность школьников.

Применение задач и использованием элементов теории графов на факультативных занятиях в школе как раз и преследует цель активизации мыслительной деятельности учащихся. Мы считаем, что практический материал по нашему исследованию может быть полезен на факультативных занятиях по математике.

Таким образом, цель исследовательской работы достигнута, задачи решены. В перспективе мы планируем продолжить изучение теории графов и разработать свои маршруты, например, с помощью графа создать экскурсионный маршрут для школьного автобуса ЗАТО Александровск по музеям и памятным местам г. Мурманска.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Березина Л. Ю. «Графы и их применение» - М.: «Просвещение», 1979

    Гарднер М. «Математические досуги», М. «Мир», 1972

    Гарднер М. «Математические головоломки и развлечения», М. «Мир», 1971

    Горбачев А. «Сборник олимпиадных задач» - М. МЦНМО, 2005

    Зыков А. А. Основы теории графов. — М.: «Вузовская книга», 2004. — С. 664

    Касаткин В. Н. «Необычные задачи математики», Киев, «Радяньска школа», 1987

    Математическая составляющая / Редакторы-составители Н.Н. Андреев, С.П. Коновалов, Н.М. Панюшкин. - М.: Фонд «Математические этюды» 2015 г. - 151 с.

    Мельников О. И. «Занимательные задачи по теории графов», Мн. «ТетраСистемс»,2001

    Мельников О.И. Незнайка в стране графов: Пособие для учащихся. Изд. 3-е, стереотипное. М.: КомКнига, 2007. — 160 с.

    Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи», М. «Наука», 1988

    Оре О. «Графы и их применения», М. «Мир», 1965

    Харари Ф. Теория графов / Пер.с англ. и предисл. В. П. Козырева. Под ред. Г. П. Гаврилова. Изд. 2-е. - М.: Едиториал УРСС, 2003. - 296 с.

ПРИЛОЖЕНИЕ №1

Составление оптимального маршрута посещения главных достопримечательностей

г. Мурманск с помощью графа.

Оптимальный маршрут составит:

8. Кольский мост6. Парк Огни Мурманска7. Парк Долина Уюта2. Свято-Никольский собор10. Площадь Пяти углов5. Атомный ледокол Ленин9. Музей истории Мурманского морского пароходства11. Морской торговый порт1. Морской православный храм Спас-на-водах4. Памятник коту Семену3. Океанариум.

ПУТЕВОДИТЕЛЬ ПО ДОСТОПРИМЕЧАТЕЛЬНОСТЯМ МУРМАНСКА

ПРИЛОЖЕНИЕ №2

Социологические опросы № 1, 2

Вверх