Формула работы заряда в электрическом поле. Работа электростатического поля по перемещению заряда. Свойства силовых линий

Элементарная работа сил в электростатическом поле

Переместим положительный точечный заряд в поле заряда на малое расстояние из точки N в точку В , рисунок 10.

Рисунок 10

При малом перемещении, , где . Из рисунка видно, что . По определению из механики, элементарная работа

С учетом (6):

(10)

Поскольку – бесконечно-малая величина, изменением силы внутри интерваламожно пренебречь.

Работа в электростатическом поле при перемещении точечного заряда на конечное расстояние

Пусть заряд переместился из точки 1 в точку 2, рисунок 11, на расстояние , соизмеримое с и, по произвольной траектории. Найдем величину работы А , пользуясь результатом формулой (10). Для этого достаточно проинтегрировать левую часть выражения от 0до А, а правую – от до . В результате получим:

(11)

Изменив знак правой части (11) и порядок вычитания в скобках, получим окончательную формулу

(12)

Из (12) вытекают важные следствия :

1. Работа в электростатическом поле не зависит от формы траектории движения заряда.

2. Знак работы определяется:

а) знаками зарядов,

б) знаком круглой скобки, который, в свою очередь зависит от соотношения между и.

3. В любом случае если , работу совершают силы электростатического поля ; если , работа совершается внешними силами неэлектрической природы , действующими против сил электрического поля.

Рисунок 11 Рисунок 12

Работа в электростатическом поле при перемещении точечного заряда по замкнутой траектории

Переместим заряд в поле заряда по траектории . Работа, при таком перемещении складывается из работы по перемещению по траектории (рисунок 12).

(13)

и работы по перемещению по траектории :

(14)

На рисунке 12 точка , соответствующая расстоянию – любая точка траектории . Складывая (14) и (13) , получим:

4. Характеристики электрического поля: потенциал, разность потенциалов. Эквипотенциальные поверхности, связь потенциала с напряженностью. Доказательство: эквипотенциальные поверхности перпендикулярны вектору (силовым линиям).

Потенциал – энергетический параметр электростатического поля

Рисунок 11 Рисунок 12

Согласно рисунку 11, в точке 1 и в точке 2 на заряд действуют силы , . Следовательно, в каждой из этих точек заряд обладает энергией , – соответственно, поскольку силы , способны совершить работы , . Полагая заряд незамкнутой системой, находящейся в поле заряда , по определению энергии, имеем:

(16)

Согласно (14),

(17)

Поскольку, по условию задачи, кроме заряда никакие другие заряды не влияют на , согласно (17):



(18)

Следовательно, если два любых точечных заряда находятся на расстоянии , энергия их взаимодействия, рисунок 13:

Рисунок13

(19)

Разделим (19) на величину :

Величина , как и напряженность поля (9), не зависит от величины и является параметром электрического поля заряда , в котором находится заряд .

Отношение энергии к величине заряда называется потенциалом той точки поля, в которой находится заряд .

(21)

В системе СИ потенциал измеряется в вольтах (В).

Из (21) следует, что знак потенциала определяется знаком заряда, создающего этот потенциал.

Для потенциалов также справедлив принцип суперпозиции. Если потенциал создается не одним, а N точечными зарядами в точке «А», его величина равна алгебраической сумме потенциалов, созданных каждым из зарядов.

Взаимосвязь напряженности электрического поля с потенциалом

Поместим пробный заряд на расстоянии от заряда , рисунок 14. В точке «А» заряд создает поле с напряженностью и потенциалом .

Рисунок 14 Рисунок 15

Как следует из рисунка 15, поле заряда , как всякого другого точечного заряда, является центральным. В любом центральном поле сила равна изменению (градиенту) энергии, взятому с обратным знаком

В нашем случае, согласно (8) и (24),

(27)

следовательно,

(28)

Сокращая на , получаем значение напряженности электрического поля в точке А, (рисунок 14). Она равна градиенту потенциала в той же точке, взятому с отрицательным знаком:



В трехмерном пространстве формула (29) принимает вид

(30)

Направление вектора показывает направление быстрейшего возрастания потенциала. Таким образом, вектор напряженности электрического поля направлен всегда в сторону быстрейшего уменьшения потенциала.

Согласно (29) размерность напряженности можно представить в вольтах, деленных на метр: .

Эквипотенциальные поверхности – это поверхности, во всех точках которых потенциал имеет одно и то же значение. Эти поверхности целесообразно проводить так, чтобы разность потенциалов между соседними поверхностями была одинаковой. Тогда по густоте эк­випотенциальных поверхностей можно наглядно судить о значении напряженности поля в разных точках. Величина напряженности больше там, где гуще эквипотенциальные поверхности. В качестве при­мера на рисунке 2 приведено двумерное изображение электростатичес­кого поля.

Перпендику­лярен эквипотенциальной поверхности. Далее, переместимся по нормали к эквипотенциальной пове­рхности в сторону уменьшения потенциала. В этом случае и из формулы (21) следует, что . Значит, вектор направлен по нормали в сторону уменьшения потенциала.

При перемещении заряда в электростатическом поле, действующие на

заряд кулоновские силы, совершают работу. Пусть заряд q 0 >0 перемещается в поле заряда q>0 из точки С в точку В вдоль произвольной траектории (рис.2.1). На q 0 действует кулоновская сила

При элементарном перемещении заряда dl , эта сила совер­шает работу , где a - угол между векторами и . Величина dl cosa=dr является про­екцией вектора на направление силы . Таким образом, dA=Fdr, . Полная работа по перемещению заряда из точки С в В определяется интегра­лом , где r 1 и r 2 - расстояния заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении электрического заряда q 0 в поле точеч­ного заряда q, не зависит от формы траектории перемещения, а зависит только от начальной и конечной точки перемещения .

Поле, удовлетворяющее этому условию, яв­ляется потенциальным. Следовательно, электростатическое поле точечного заряда - потенциальное , а действующие в нем силы - консервативные .

Если заряды q и q 0 одного знака, то работа сил отталкивания будет положи­тельной при их удалении и отрицательной при их сближении. Если заряды q и q 0 разноименные, то работа сил притяжения будет положительной при их сближении и отрицательной при удалении друг от друга.

Пусть электростатическое поле, в котором перемещается заряд q 0 , создано сис­темой зарядов q 1 , q 2 ,...,q n . Следовательно, на q 0 действуют независимые силы , равнодействующая которых равна их векторной сумме. Работа А рав­но­действующей силы равна алгебраической сумме работ составляющих сил, , где r i 1 и r i 2 - начальное и конечное расстояния между зарядами q i и q 0 .

Лекция А.П.Зубарева

Работа сил поля по перемещению заряда.

Потенциал и разность потенциалов электрического поля.

Как следует из закона Кулона, сила, действующая на точечный заряд q в электрическом поле, созданном другими зарядами, является центральной . Напомним, что центральной называется сила, линия действия которой направлена по радиус-вектору, соединяющему некоторую неподвижную точку О (центр поля) с любой точкой траектории. Из «Механики» известно, что все центральные силы являются потенциальными . Работа этих сил не зависит от формы пути перемещения тела, на которое они действуют, и равна нулю по любому замкнутому контуру (пути перемещения). В применении к электростатическому полю (см. рисунок) ниже:


.

Рисунок. К определению работы сил электростатического поля.

То есть, работа сил поля по перемещению заряда q из точки 1 в точку 2 равна по величине и противоположна по знаку работе по перемещению заряда из точки 2 в точку 1, независимо формы пути перемещения. Следовательно, работа сил поля по перемещению заряда может быть представлена разностью потенциальных энергий заряда в начальной и конечной точках пути перемещения:

Введем потенциал электростатического поля φ, задав его как отношение:

, (размерность в СИ: ).

Тогда работа сил поля по перемещению точечного заряда q из точки 1 в точку 2 будет:

Разность потенциалов называется электрическим напряжением. Размерность напряжения, как и потенциала, [U] = B.

Считается, что на бесконечности электрические поля отсутствуют, и значит . Это позволяет дать определение потенциала как работы, которую нужно совершить, чтобы переместить заряд q = +1 из бесконечности в данную точку пространства. Таким образом, потенциал электрического поля является его энергетической характеристикой.

Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.

Напряженность и потенциал – это две характеристики одного и того же объекта – электрического поля, поэтому между ними должна существовать функциональная связь. Действительно, работа сил поля по перемещению заряда q из одной точки пространства в другую может быть представлена двояким образом:

Откуда следует, что

Это и есть искомая связь между напряженностью и потенциалом электрического поля в дифференциальном виде.

- вектор, направленный из точки с меньшим потенциалом в точку с большим потенциалом (см. рисунок ниже).


Рисунок. Векторы и gradφ.

При этом модуль вектора напряженности равен

Из свойства потенциальности электростатического поля следует, что работа сил поля по замкнутому контуру (φ 1 = φ 2) равна нулю:

поэтому можем написать

Последнее равенство отражает суть второй основной теоремы электростатики – теоремы о циркуляции электрического поля , согласно которой циркуляция поля вдоль произвольного замкнутого контура равна нулю. Эта теорема является прямым следствиемпотенциальности электростатического поля.

Эквипотенциальные линии и поверхности и их свойства.

Линии и поверхности, все точки которых имеют одинаковый потенциал, называются эквипотенциальными . Их свойства непосредственно вытекают из представления работы сил поля и иллюстрируются на рисунке:


Рисунок. Иллюстрация свойств эквипотенциальных линий и поверхностей.

1) - работа по перемещению заряда вдоль эквипотенциальной линии (поверхности) равна нулю, т. к. .

При перемещении заряда в электростатическом поле, действующие на заряд кулоновские силы, совершают работу. Пусть заряд q 0 0 перемещается в поле заряда q0 из точки С в точку В вдоль произвольной траектории (рис.1.12). На q 0 действует кулоновская сила

При элементарном перемещении заряда dl , эта сила совершает работу dA

Где  - угол между векторами и . Величина dl cos=dr является проекцией вектора на направление силы . Таким образом, dA=Fdr, . Полная работа по перемещению заряда из точки С в В определяется интегралом , где r 1 и r 2 - расстояния заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении электрического заряда q 0 в поле точечного заряда q, не зависит от формы траектории перемещения, а зависит только от начальной и конечной точки перемещения .

В разделе динамики показано, что поле, удовлетворяющее этому условию, является потенциальным. Следовательно, электростатическое поле точечного заряда - потенциальное , а действующие в нем силы - консервативные .

Если заряды q и q 0 одного знака, то работа сил отталкивания будет положительной при их удалении и отрицательной при их сближении (в последнем случае работу совершают внешние силы). Если заряды q и q 0 разноименные, то работа сил притяжения будет положительной при их сближении и отрицательной при удалении друг от друга (последнем случае работу также совершают внешние силы).

Пусть электростатическое поле, в котором перемещается заряд q 0 , создано системой зарядов q 1 , q 2 ,...,q n . Следовательно, на q 0 действуют независимые силы , равнодействующая которых равна их векторной сумме. Работа А равнодействующей силы равна алгебраической сумме работ составляющих сил, , где r i1 и r i2 - начальное и конечное расстояния между зарядами q i и q 0 .

Циркуляция вектора напряженности.

При перемещении заряда по произвольному замкнутому пути L работа сил электростатического поля равна нулю. Поскольку, конечное положение заряда равно начальному r 1 =r 2 , то и (кружок у знака интеграла указывает на то, что интегрирование производится по замкнутому пути). Так как и , то . Отсюда получаем . Сократив обе части равенства на q 0 , получим или , где E l =Ecos - проекция вектора Е на направление элементарного перемещения . Интеграл называется циркуляцией вектора напряженности . Таким образом,циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю . Это заключение есть условие потенциальности поля .

Потенциальная энергия заряда.

В потенциальном поле тела обладают потенциальной энергией и работа консервативных сил совершается за счет убыли потенциальной энергии.

Поэтому работу A 12 можно представить, как разность потенциальных энергий заряда q 0 в начальной и конечной точках поля заряда q :

Потенциальная энергия заряда q 0 , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0 .

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения ) отрицательна .

Если поле создается системой n точечных зарядов, то потенциальная энергия заряда q 0 , находящегося в этом поле, равна сумме его потенциальных энергий, создаваемых каждым из зарядов в отдельности:

Потенциал электростатического поля.

Отношение не зависит от пробного заряда q0 и является, энергетической характеристикой поля, называемой потенциалом :

Потенциал ϕ в какой-либо точке электростатического поля есть скалярная физическая величина , определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Потенциал электростатического поля - скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

Следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически ).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение - разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением .

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

Эквипотенциальные поверхности.

ЭПП - поверхности равного потенциала.

Свойства ЭПП:

Работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

Вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом - электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

На всякий заряд в электрическом поле действует сила, которая может перемещать этот заряд. Определить работу А перемещения точечного положительного заряда q из точки О в точку n, совершаемую силами электрического поля отрицательного заряда Q. По закону Кулона сила, перемещающая заряд, является переменной и равной

Где r - переменное расстояние между зарядами.

. Это выражение можно получить так:

Величина представляет собой потенциальную энергию W п заряда в данной точке электрического поля:

Знак (-) показывает, что при перемещении заряда полем его потенциальная энергия убывает, переходя в работу перемещения.

Величина равная потенциальной энергии единичного положительного заряда (q = +1), называется потенциалом электрического поля.

Тогда . Для q = +1 .

Таким образом, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного положительного заряда из одной точки в другую.

Потенциал точки электрического поля равен работе по перемещению единичного положительного заряда из данной точки на бесконечность: . Единица измерения - Вольт = Дж/Кл.

Работа перемещения заряда в электрическом поле не зависит от формы пути, а зависит только от разности потенциалов начальной и конечной точек пути.

Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной.

Напряженность поля является его силовой характеристикой, а потенциал –энергетической.

Связь между напряженностью поля и его потенциалом выражается формулой

,

знак (-) обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, а в сторону возрастания потенциала.

5. Использование электрических полей в медицине.

Франклинизация, или «электростатический душ», представляет собой лечебный метод, при котором организм больного или отдельные участки его подвергаются воздействию постоянного электрического поля высокого напряжения.

Постоянное электрическое поле при процедуре общего воздействия может достигать 50 кВ, при местном воздействии 15 – 20 кВ.

Механизм лечебного действия. Процедуру франклинизации проводят таким образом, что голова больного либо другой участок тела становятся как бы одной из пластин конденсатора, в то время как второй является электрод, подвешенный над головой, или устанавливаемый над местом воздействия на расстоянии 6 - 10см. Под влиянием высокого напряжения под остриями игл, закрепленных на электроде, возникает ионизация воздуха с образованием аэроионов, озона и окислов азота.

Вдыхание озона и аэроионов вызывает реакцию сосудистой сети. После кратковременного спазма сосудов происходит расширение капилляров не только поверхностных тканей, но и глубоких. В результате улучшаются обменно-трофические процессы, а при наличии повреждения тканей стимулируются процессы регенерации и восстановления функций.

В результате улучшения кровообращения, нормализации обменных процессов и функции нервов происходит уменьшение головных болей, повышенного артериального давления, повышенного сосудистого тонуса, урежение пульса.

Применение франклинизации показано при функциональных расстройствах нервной системы

Примеры решения задач

1. При работе аппарата для франклинизации ежесекундно в 1 см 3 воздуха образуется 500000 легких аэроионов. Определить работу ионизации, необходимую для создания в 225 см 3 воздуха такого же количества аэроионов за время лечебного сеанса (15 мин). Потенциал ионизации молекул воздуха считать равным 13,54 В, условно считать воздух однородным газом.

- потенциал ионизации, А– работа ионизации, N-количество электронов.

2. При лечении электростатическим душем на электродах электрической машины приложена разность потенциалов 100 кВ. Определить, какой заряд проходит между электродами за время одной процедуры лечения, если известно, что силы электрического поля при этом совершают работу 1800Дж.

Отсюда

Электрический диполь в медицине

В соответствии с теорией Эйнтховена, лежащей в основе электрокардиографии, сердце представляет собой электрический диполь, расположенный в центре равностороннего треугольника (треугольник Эйнтховена), вершины которого условно можно считать

находящимися в правой руке, левой руке и левой ноге.

За время сердечного цикла изменяется как положение диполя в пространстве, так и дипольный момент. Измерение разности потенциалов между вершинами треугольника Эйнтховена позволяет определить соотношение между проекциями дипольного момента сердца на стороны треугольника следующим образом:

Зная напряжения U AB , U BC , U AC , можно определить, как ориентирован диполь относительно сторон треугольника.

В электрокардиографии разность потенциалов между двумя точками тела (в данном случае между вершинами треугольника Эйнтховена) называется отведением.

Регистрация разности потенциалов в отведениях в зависимости от времени называется электрокардиограммой.

Геометрическое место точек конца вектора дипольного момента за время сердечного цикла называется вектор-кардиограммой .

Лекция №4

Контактные явления

1. Контактная разность потенциалов. Законы Вольты.

2. Термоэлектричество.

3. Термопара, ее использование в медицине.

4. Потенциал покоя. Потенциал действия и его распространение.

  1. Контактная разность потенциалов. Законы Вольты.

При тесном соприкосновении разнородных металлов между ними возникает разность потенциалов, зависящая только от их химического состава и температуры (первый закон Вольты). Эта разность потенциалов называется контактной.

Для того чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу против сил притяжения к металлу. Эта работа называется работой выхода электрона из металла.

Приведем в контакт два различных металла 1 и 2, имеющих работу выхода соответственно A 1 и A 2, причем A 1 < A 2 . Очевидно, что свободный электрон, попавший в процессе теплового движения на поверхность раздела металлов, будет втянут во второй металл, так как со стороны этого металла на электрон действует большая сила притяжения (A 2 > A 1). Следовательно, через контакт металлов происходит «перекачка» свободных электронов из первого металла во второй, в результате чего первый металл зарядится положительно, второй - отрицательно. Возникающая при этом разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейшую «перекачку» электронов и совсем прекратит ее, когда работа перемещения электрона за счет контактной разности потенциалов станет равна разности работ выхода:

(1)

Приведем теперь в контакт два металла с A 1 = A 2 , имеющие различные концентрации свободных электронов n 01 > n 02 . Тогда начнется преимущественный перенос свободных электронов из первого металла во второй. В результате первый металл зарядится положительно, второй – отрицательно. Между металлами возникнет разность потенциалов , которая прекратит дальнейший перенос электронов. Возникающая при этом разность потенциалов определяется выражением:

, (2)

где k - постоянная Больцмана.

В общем случае контакта металлов, различающихся и работой выхода и концентрацией свободных электронов к.р.п. из (1) и (2) будет равна:

(3)

Легко показать, что сумма контактных разностей потенциалов последовательно соединенных проводников равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников:

Это положение называется вторым законом Вольты.

Если теперь непосредственно соединить концевые проводники, то существующая между ними разность потенциалов компенсируется равной по величине разностью потенциалов , возникающей в контакте 1 и 4. Поэтому к.р.п. не создает тока в замкнутой цепи металлических проводников, имеющих одинаковую температуру.

2. Термоэлектричество – это зависимость контактной разности потенциалов от температуры.

Составим замкнутую цепь из двух разнородных металлических проводников 1 и 2.

Температуры контактов a и b будем поддерживать различными Т a > T b . Тогда, согласно формуле (3), к.р.п. в горячем спае больше, чем в холодном: . В результате между спаями a и b возникает разность потенциалов , называемая термоэлектродвижущей силой, а в замкнутой цепи пойдет ток I. Пользуясь формулой (3), получим

где для каждой пары металлов.

  1. Термопара, ее использование в медицине.

Замкнутая цепь проводников, создающая ток за счет различия температур контактов между проводниками, называется термопарой.

Из формулы (4) следует, что термоэлектродвижущая сила термопары пропорциональна разности температур спаев (контактов).

Формула (4) справедлива и для температур по шкале Цельсия:

Термопарой можно измерить только разности температур. Обычно один спай поддерживается при 0ºС. Он называется холодным спаем. Другой спай называется горячим или измерительным.

Термопара обладает существенными преимуществами перед ртутными термометрами: она чувствительна, безинерционна, позволяет измерять температуру малых объектов, допускает дистанционные измерения.

Измерение профиля температурного поля тела человека.

Считается, что температура тела человека постоянна, однако это постоянство относительно, поскольку на различных участках тела температура не одинакова и меняется в зависимости от функционального состояния организма.

Температура кожи имеет свою вполне определенную топографию. Самую низкую температуру (23-30º) имеют дистальные отделы конечностей, кончик носа, ушные раковины. Самая высокая температура – в подмышечной области, в промежности, области шеи, губ, щек. Остальные участки имеют температуру 31 - 33,5 ºС.

У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием диагностики заболеваний методом построения профиля температурного поля с помощью контактных устройств: термопары и термометра сопротивления.

4. Потенциал покоя. Потенциал действия и его распространение.

Поверхностная мембрана клетки не одинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя)

При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия, который распространяется в нервных волокнах.

Механизм распространения потенциала действия по нервному волокну рассматривается по аналогии с распространением электромагнитной волны по двухпроводной линии. Однако наряду с этой аналогией существуют и принципиальные различия.

Электромагнитная волна, распространяясь в среде, ослабевает, так как ее энергия рассеивается, превращаясь в энергию молекулярно-теплового движения. Источником энергии электромагнитной волны является ее источник: генератор, искра и т.д.

Волна возбуждения не затухает, так как получает энергию из самой среды, в которой она распространяется (энергия заряженной мембраны).

Таким образом, распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки.

Примеры решения задач

1. При построении профиля температурного поля поверхности тела человека используется термопара с сопротивлением r 1 = 4 Ом и гальванометр с сопротивлением r 2 = 80 Ом; I=26 мкА при разности температур спаев ºС. Чему равна постоянная термопары?

Термоэдс, возникающая в термопаре, равна , где термопары, -разность температур спаев.

По закону Ома для участка цепи ,где U принимаем как . Тогда

Лекция №5

Электромагнетизм

1. Природа магнетизма.

2. Магнитное взаимодействие токов в вакууме. Закон Ампера.

4. Диа-, пара- и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

5. Магнитные свойства тканей организма.

1. Природа магнетизма.

Вокруг движущихся электрических зарядов (токов) возникает магнитное поле, посредством которого эти заряды взаимодействуют с магнитными или другими движущимися электрическими зарядами.

Магнитное поле является силовым полем, его изображают посредством магнитных силовых линий. В отличие от силовых линий электрического поля магнитные силовые линии всегда замкнуты.

Магнитные свойства вещества обусловлены элементарными круговыми токами в атомах и молекулах этого вещества.

2 . Магнитное взаимодействие токов в вакууме. Закон Ампера .

Магнитное взаимодействие токов изучалось с помощью подвижных проволочных контуров. Ампер установил, что величина силы взаимодействия двух малых участков проводников 1 и 2 с токами пропорциональна длинам и этих участков, силам тока I 1 и I 2 в них и обратно пропорциональна квадрату расстояния r между участками:

Выяснилось, что сила воздействия первого участка на второй зависит от их взаиморасположения и пропорциональна синусам углов и .

где - угол между и радиусом-вектором r 12 , соединяющим с , а - угол между и нормалью n к плоскости Q, содержащей участок и радиус-вектор r 12.

Объединяя (1) и (2) и вводя коэффициент пропорциональности k, получим математическое выражение закона Ампера:

(3)

Направление силы также определяется по правилу буравчика: оно совпадает с направлением поступательного движения буравчика, рукоятка которого вращается от к нормали n 1.

Элементом тока называется вектор, равный по величине произведению Idl бесконечно малого участка длины dl проводника на силу тока I в нем и направленный вдоль этого тока. Тогда, переходя в (3) от малых к бесконечно малым dl, можно записать закон Ампера в дифференциальной форме:

. (4)

Коэффициент k можно представить в виде

где - магнитная постоянная (или магнитная проницаемость вакуума).

Величина для рационализации с учетом (5) и (4) запишется в виде

. (6)

3 . Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа .

Поскольку электрические токи взаимодействуют друг с другом посредством своих магнитных полей, количественную характеристику магнитного поля можно установить на основе этого взаимодействия-закона Ампера. Для этого проводник l с током I разобьем на множество элементарных участков dl. Он создает в пространстве поле.

В точке О этого поля, находящуюся на расстоянии r от dl, поместим I 0 dl 0. Тогда, согласно закону Ампера (6), на этот элемент будет действовать сила

(7)

где -угол между направлением тока I на участке dl (создающем поле) и направлением радиуса-вектора r, а -угол между направлением тока I 0 dl 0 и нормалью n к плоскости Q содержащей dl и r.

В формуле (7) выделим часть, не зависящую от элемента тока I 0 dl 0, обозначив ее через dH:

Закон Био-Савара-Лапласа (8)

Величина dH зависит только от элемента тока Idl, создающего магнитное поле, и от положения точки О.

Величина dH является количественной характеристикой магнитного поля и называется напряженностью магнитного поля. Подставляя (8) в (7), получим

где - угол между направлением тока I 0 и магнитного поля dH. Формула (9) называется формулой Ампера, выражает зависимость силы, с которой магнитное поле действует на находящийся в нем элемент тока I 0 dl 0 от напряженности этого поля. Эта сила расположена в плоскости Q перпендикулярно dl 0 . Ее направление определяется по «правилу левой руки».

Полагая в (9) =90º, получим:

Т.е. напряженность магнитного поля направлена по касательной к силовой линии поля, а по величине равна отношению силы, с которой поле действует на единичный элемент тока, к магнитной постоянной.

4 . Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают его. Первые называются диамагнитными , вторые –парамагнитными веществами. Среди парамагнетиков резко выделяется группа веществ, вызывающих очень большое усиление внешнего поля. Это ферромагнетики .

Диамагнетики - фосфор, сера, золото, серебро, медь, вода, органические соединения.

Парамагнетики - кислород, азот, алюминий, вольфрам, платина, щелочные и щелочноземельные металлы.

Ферромагнетики – железо, никель, кобальт, их сплавы.

Геометрическая сумма орбитальных и спиновых магнитных моментов электронов и собственного магнитного момента ядра образует магнитный момент атома (молекулы) вещества.

У диамагнетиков суммарный магнитный момент атома (молекулы) равен нулю, т.к. магнитные моменты компенсируют друг друга. Однако под влиянием внешнего магнитного поля у этих атомов индуцируется магнитный момент, направленный противоположно внешнему полю. В результате диамагнитная среда намагничивается и создает собственное магнитное поле, направленное противоположно внешнему и ослабляющее его.

Индуцированные магнитные моменты атомов диамагнетика сохраняются до тех пор, пока существует внешнее магнитное поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик размагничивается.

У атомов парамагнетиков орбитальные, спиновые, ядерные моменты не компенсируют друг друга. Однако атомные магнитные моменты расположены беспорядочно, поэтому парамагнитная среда не обнаруживает магнитных свойств. Внешнее поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля. В результате парамагнетик намагничивается и создает собственное магнитное поле, совпадающее с внешним и усиливающим его.

(4), где -абсолютная магнитная проницаемость среды. В вакууме =1, , а

В ферромагнетиках имеются области (~10 -2 см) с одинаково ориентированными магнитными моментами их атомов. Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик не намагничен.

С появлением внешнего поля домены, ориентированные в направлении этого поля, начинают увеличиваться в объеме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается. При достаточно сильном поле все домены переориентируются вдоль поля, и ферромагнетик быстро намагничивается до насыщения.

При ликвидации внешнего поля ферромагнетик полностью не размагничивается, а сохраняет остаточную магнитную индукцию, так как тепловое движение не может разориентировать домены. Размагничивание может быть достигнуто нагреванием, встряхиванием или приложением обратного поля.

При температуре, равной точке Кюри, тепловое движение оказывается способным дезориентировать атомы в доменах, вследствие чего ферромагнетик превращается в парамагнетик.

Поток магнитной индукции через некоторую поверхность S равен числу линий индукции, пронизывающих эту поверхность:

(5)

Единица измерения B –Тесла, Ф-Вебер.

Вверх